Delta- and Theta-Al₂O₃ under Hydrothermal Conditions

Goro Yamaguchi and Wen-Chau Chiu

Department of Industrial Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Tokyo (Received August 18, 1967)

In a previous paper,¹⁾ Yamaguchi et al. reported that under hydrothermal conditions, γ -Al₂O₃ obtained from the dehydration of boehmite was deformed further, more tetragonally, but not inverted into δ -Al₂O₃. In this experiment the authors treated η - and γ -Al₂O₃, with various origins, under hydrothermal conditions.

Preparation of Standard Samples

In order to compare and discriminate the polymorphs, standard samples were prepared.

Preparation and Identification of η -Al₂O₃. Commercial fine gibbsite was heated in vacuum at 900°C for 30 min. The X-ray diffraction pattern of this product is given in Fig. 1a showing the character of η -Al₂O₃.

G. Yamaguchi and H. Yanagida, This Bulletin, 35, 1896 (1962).

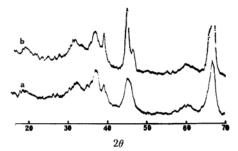


Fig. 1. X-ray diffraction patterns of η -Al₂O₃ (a) and γ -Al₂O₃ (b).

Preparation and Identification of \gamma-Al₂O₃. Well crystallized boehmite obtained hydrothermally from gibbsite was treated again under hydrothermal conditions (500°C, 50 atm) for 20 hr. The X-ray diffraction pattern of this product is given in Fig. 1b, showing the character of γ -Al₂O₃.

Preparation and Identification of δ-Al₂O₃. Well crystallized boehmite obtained hydrothermally from gibbsite was heated in air at a heating rate of 5°C/min, up to 1000°C, and kept there for 1 hr. The X-ray diffraction pattern of this product is given in Fig. 2a, showing the character of δ-Al₂O₃.

Preparation and Identification of θ **-Al**₂O₃. Bayerite, obtained by aging alumina gel²⁾ in conc. NH₃ aqueous solution, was heated in air at a heating rate 5°C/min, up to 1100°C, and kept there for 1 hr. The X-ray diffraction pattern of this product is given in Fig. 2b, showing the character of θ -Al₂O₃.

The characters of the X-ray diffraction pattern of these polymorphs are summarized in Table 1.

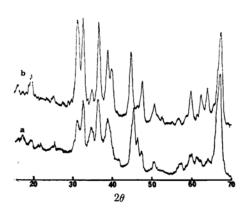


Fig. 2. X-ray diffraction patterns of δ -Al₂O₃ (a) and θ -Al₂O₃ (b).

Hydrothermal Treatment of η- and γ-Al₂O₃

Starting materials were as follows:

1. 7-Al₂O₃ A. Bayerite, obtained by treating alumina gel with conc. NH₃ aqueous solution at

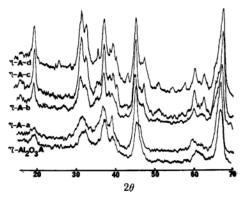


Fig. 3. X-ray diffraction patterns of products from η-Al₂O₃ A.

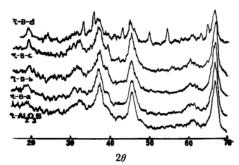


Fig. 4. X-ray diffraction patterns of products from η-Al₂O₃ B.

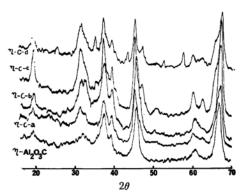


Fig. 5. X-ray diffraction patterns of products from $\eta\text{-Al}_2\text{O}_3$ C.

room temperature for 3 days, was heated and dehydrated in air at 800°C for 1 hr.

- 2. η-Al₂O₃ B. Bayerite, obtained by hydrolyzing sodium aluminate aqueous solution (NaOH 3.5 mol/l, Na/Al=1.35) at 15°C for 3 days, was heated and dehydrated in air at 800°C for 1 hr.
- 3. η-Al₂O₃ C. Nordstrandite, obtained by treating alumina gel with a 5% ethylenediamine

²⁾ G. Yamaguchi and W. This Bulletin, Feb. (1968).

Table 1. Character of diffraction pattern of $\mathrm{Al_2O_3}$ polymorphs, () shows spinel index

2 heta range	η	γ	δ	θ
67—68	(440) singlet	(440) doublet	(440) doublet	doublet
59—64	(333) (511) broad	(333) (511) broad	two peaks	three peaks
4548	(400) singlet	(400) doublet	(400) doublet and one more small peak	two or three peaks
ca. 39	(222) singlet	(222) singlet	(222) singlet	singlet
36-38	(311) broad	(311) broad	two peaks	two peaks
34 - 35	_	_	one peak	small one peak
31-32	(220) broad	(220) broad	two peaks	two peaks

Table 2. Starting materials, hydrothermal conditions and products

0		Hydrothermal condition			
Starting material	Notation	Temp.	Pressure atm	Period hr	Product
η-Al ₂ O ₃ A	η-A-a	450	50	20	7
	η-A-b	450	110	20	δ or θ
	η-A-c	500	40	175	θ
	η -A-d	500	50	20	$\theta + (\alpha)$
η-Al ₂ O ₃ Β	η-B-a	400	50	20	7
	η -B-b	450	30	20	7
	η-B-c	500	30	20	7
	η -B-d	500	50	20	$\gamma + (\alpha)$
η-Al ₂ O₃ C	η-C-a	400	50	20	r
	η-C-b	450	70	45	r
	η-C-c	500	50	20	γ
	η -C-d	500	130	20	δ or $\theta + (\alpha)$
η -Al ₂ O ₃ D	η-D-a	400	50	20	γ
	$\eta ext{-} ext{D-} ext{b}$	450	90	20	γ
	η -D-c	500	70	20	γ
	$\eta ext{-D-d}$	500	90	20	$\gamma + (\alpha)$
η-Al ₂ O ₃ Ε	η-E-a	450	70	20	η
	η -E-b	450	130	20	γ
	η -E-c	500	80	20	γ
	$\eta ext{-E-d}$	500	200	20	$\gamma + \alpha$
η-Al ₂ O ₃ F	η-F-a	400	40	20	η
	η-F-b	450	70	45	η
	$\eta ext{-} ext{F-} ext{c}$	500	70	45	γ
	$\eta ext{-} ext{F-} ext{d}$	500	130	20	$\gamma + (\alpha)$
r-Al ₂ O ₃	γ-a	400	50	20	γ ; $a=7.98$ $c=7.78$
a = 7.94	γ-b	450	90	45	γ ; $a=7.98$ $c=7.73$
c = 7.85	γ-c	520	50	20	γ ; $a=7.99$ $c=7.72$
	γ -d	520	70	20	$\gamma + (\alpha) \ a = 8.00 \ c = 7.72$

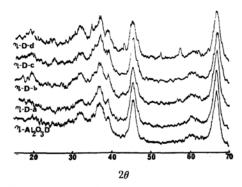


Fig. 6. X-ray diffraction patterns of products from $\eta\text{-Al}_2O_3$ D.

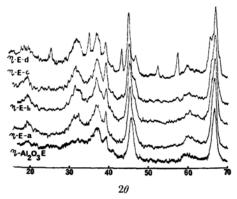


Fig. 7. X-ray diffraction patterns of products from η -Al₂O₃ E.

aqueous solution at 40°C for 2 days, was heated and dehydrated in air at 700°C for 1 hr.

- 4. η-Al₂O₃ D. Commercial gibbsite was heated and dehydrated in vacuum at 900°C for 0.5 hr.
- 5. η-Al₂O₃ E. Well crystallized boehmite was heated and dehydrated in vacuum at 900°C for 0.5 hr.
- 6. η-Al₂O₃ F. Bayerite, obtained by treating alumina gel with conc. NH₃ aqueous solution at room temperature for 3 days, was heated and dehydrated in vacuum at 800°C for 1 hr.
- 7. γ -Al₂O₃. Well crystallized boehmite was heated in air at 650°C for 0.5 hr.

These materials were treated under hydrothermal conditions and examined by an X-ray diffraction method. Results are given in Table 2, and Fig. 3 through Fig. 9.

Conclusion and Discussion

1. Similar to the previous paper, 1) γ -Al₂O₃, obtained from the dehydration of well crystallized boehmite was deformed further, more tetragonally, but not inverted into δ - or θ -Al₂O₃. As for η -

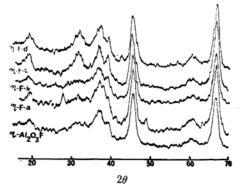


Fig. 8. X-ray diffraction patterns of products from η -Al₂O₃ F.

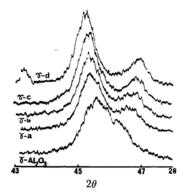


Fig. 9. X-ray diffraction peaks of (400) and (004) of γ-Al₂O₃ under hydrothermal condition.

- Al_2O_3 however, some was only deformed into γ - Al_2O_3 , while the rest was inverted into θ - Al_2O_3 before being finally inverted into α - Al_2O_3 ; γ - Al_2O_3 A, and C belonged to the latter.
- 2. Before the formation of θ -Al₂O₃, η -Al₂O₃ A, and C seemed to pass through an intermediate phase like δ -Al₂O₃ but the X-ray diffraction pattern of this intermediate phase was not correctly coincident with that of standard δ -Al₂O₃ (Fig. 2a). Interpretation of this phenomenon can not be accomplished before the structural problem of δ -Al₂O₃ and θ -Al₂O₃ is clarified. Whether or not δ -Al₂O₃ and θ -Al₂O₃ are considered to be of different phases is a problem which is now being investigated by the present authors.
- 3. Among η -Al₂O₃ specimens obtained from different origins, there were two types. One was hardly inverted into θ -Al₂O₃, and the other was easily inverted under hydrothermal conditions. This difference seems to be due to a delicate structural difference, but the explanation is left as a future problem.